❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Google identifies low noise β€œphase transition” in its quantum processor

9 October 2024 at 17:58

Back in 2019, Google made waves by claiming it had achieved what has been called "quantum supremacy"β€”the ability of a quantum computer to perform operations that would take a wildly impractical amount of time to simulate on standard computing hardware. That claim proved to be controversial, in that the operations were little more than a benchmark that involved getting the quantum computer to behave like a quantum computer; separately, improved ideas about how to perform the simulation on a supercomputer cut the time required down significantly.

But Google is back with a new exploration of the benchmark, described in a paper published in Nature on Wednesday. It uses the benchmark to identify what it calls a phase transition in the performance of its quantum processor and uses it to identify conditions where the processor can operate with low noise. Taking advantage of that, they again show that, even giving classical hardware every potential advantage, it would take a supercomputer a dozen years to simulate things.

Cross entropy benchmarking

The benchmark in question involves the performance of what are called quantum random circuits, which involves performing a set of operations on qubits and letting the state of the system evolve over time, so that the output depends heavily on the stochastic nature of measurement outcomes in quantum mechanics. Each qubit will have a probability of producing one of two results, but unless that probability is one, there's no way of knowing which of the results you'll actually get. As a result, the output of the operations will be a string of truly random bits.

Read full article

Comments

Β© Google

IBM opens its quantum-computing stack to third parties

27 September 2024 at 16:03

As we described earlier this year, operating a quantum computer will require a significant investment in classical computing resources, given the amount of measurements and control operations that need to be executed and interpreted. That means that operating a quantum computer will also require a software stack to control and interpret the flow of information from the quantum side.

But software also gets involved well before anything gets executed. While it's possible to execute algorithms on quantum hardware by defining the full set of commands sent to the hardware, most users are going to want to focus on algorithm development, rather than the details of controlling any single piece of quantum hardware. "If everyone's got to get down and know what the noise is, [use] performance management tools, they've got to know how to compile a quantum circuit through hardware, you've got to become an expert in too much to be able to do the algorithm discovery," said IBM's Jay Gambetta. So, part of the software stack that companies are developing to control their quantum hardware includes software that converts abstract representations of quantum algorithms into the series of commands needed to execute them.

IBM's version of this software is called Qiskit (although it was made open source and has since been adopted by other companies). Recently, IBM made a couple of announcements regarding Qiskit, both benchmarking it in comparison to other software stacks and opening it up to third-party modules. We'll take a look at what software stacks do before getting into the details of what's new.

Read full article

Comments

Β© [CDATA[IBM]]

Unlocking the Future: The Transformative Power of Quantum Computing Breakthroughs

2 April 2024 at 15:02

The realm of quantum computing stands as one of the most thrilling frontiers in both science and education today. With its potential to revolutionize industries, from healthcare to cryptography, understanding the latest breakthroughs in this field is essential for those poised at the intersection of innovation and knowledge. As experts in science and education, this article delves into the heart…

Source

❌
❌