❌

Normal view

There are new articles available, click to refresh the page.
Before yesterdayMain stream

Meteorites give the Moon its extremely thin atmosphere

17 August 2024 at 11:05
Graphic of a spacecraft above a grey planetary body, with a distant sun in the background.

Enlarge / Artist's rendition of the LADEE mission above the lunar surface. (credit: NASA/ Dana Berry)

The Moon may not have much of an atmosphere, mostly because of its weak gravitational field (whether it had a substantial atmosphere billions of years ago is debatable). But it is thought to presently be maintaining its tenuous atmosphereβ€”also known as an exosphereβ€”because of meteorite impacts.

Space rocks have been bombarding the Moon for its 4.5-billion-year existence. Researchers from MIT and the University of Chicago have now found that lunar soil samples collected by astronauts during the Apollo era show evidence that meteorites, from hulking meteors to micrometeoroids no bigger than specks of dust, have launched a steady flow of atoms into the exosphere.

Though some of these atoms escape into space and others fall back to the surface, those that do remain above the Moon create a thin atmosphere that keeps being replenished as more meteorites crash into the surface.

Read 15 remaining paragraphs | Comments

Seismic data shows Mars is often pummeled by planet-shaking meteorites

One of the craters identified seismically, then confirmed through orbital images.

Enlarge / One of the craters identified seismically, then confirmed through orbital images. (credit: NASA/JPL-Caltech/University of Arizona)

Mars trembles with marsquakes, but not all of them are driven by phenomena that occur beneath the surfaceβ€”many are the aftermath of meteorite strikes.

Meteorites crash down to Mars every day. After analyzing data from NASA’s InSight lander, an international team of researchers noticed that its seismometer, SEIS, detected six nearby seismic events. These were linked to the same acoustic atmospheric signal that meteorites generate when whizzing through the atmosphere of Mars. Further investigation identified all six as part of an entirely new class of quakes known as VF (very high frequency) events.

The collisions that generate VF marsquakes occur in fractions of a second, much less time than the few seconds it takes tectonic processes to cause quakes similar in size. This is some of the key seismological data that has helped us understand the occurrence of earthquakes caused by meteoric impacts on Mars. This is also the first time seismic data was used to determine how frequently impact craters are formed.

Read 12 remaining paragraphs | Comments

❌
❌