❌

Reading view

There are new articles available, click to refresh the page.

US grid adds batteries at 10x the rate of natural gas in first half of 2024

US grid adds batteries at 10x the rate of natural gas in first half of 2024

(credit: DOE)

While solar power is growing at an extremely rapid clip, in absolute terms, the use of natural gas for electricity production has continued to outpace renewables. But that looks set to change in 2024, as the US Energy Information Agency (EIA) has run the numbers on the first half of the year and found that wind, solar, and batteries were each installed at a pace that dwarfs new natural gas generators. And the gap is expected to get dramatically larger before the year is over.

Solar, batteries booming

According to the EIA's numbers, about 20 GW of new capacity was added in the first half of this year, and solar accounts for 60 percent of it. Over a third of the solar additions occurred in just two states, Texas and Florida. There were two projects that went live that were rated at over 600 MW of capacity, one in Texas, the other in Nevada.

Next up is batteries: The US saw 4.2 additional gigawatts of battery capacity during this period, meaning over 20 percent of the total new capacity. (Batteries are treated as the equivalent of a generating source by the EIA since they can dispatch electricity to the grid on demand, even if they can't do so continuously.) Texas and California alone accounted for over 60 percent of these additions; throw in Arizona and Nevada, and you're at 93 percent of the installed capacity.

Read 9 remaining paragraphs | Comments

Silicon plus perovskite solar reaches 34 percent efficiency

Solar panels with green foliage behind them, and a diagram of a chemical's structure in the foreground.

Enlarge / Some solar panels, along with a diagram of a perovskite's crystal structure. (credit: Subhakitnibhat Kewiko)

As the price of silicon panels has continued to come down, we've reached the point where they're a small and shrinking cost of building a solar farm. That means that it might be worth spending more to get a panel that converts more of the incoming sunlight to electricity, since it allows you to get more out of the price paid to get each panel installed. But silicon panels are already pushing up against physical limits on efficiency. Which means our best chance for a major boost in panel efficiency may be to combine silicon with an additional photovoltaic material.

Right now, most of the focus is on pairing silicon with a class of materials called perovskites. Perovskite crystals can be layered on top of silicon, creating a panel with two materials that absorb different areas of the spectrumβ€”plus, perovskites can be made from relatively cheap raw materials. Unfortunately, it has been difficult to make perovskites that are both high-efficiency and last for the decades that the silicon portion will.

Lots of labs are attempting to change that, though. And two of them reported some progress this week, including a perovskite/silicon system that achieved 34 percent efficiency.

Read 15 remaining paragraphs | Comments

β€œEnergy-smart” bricks need less power to make, are better insulation

Image of a person holding a bag full of dirty looking material with jagged pieces in it.

Enlarge / Some of the waste material that ends up part of these bricks. (credit: Seamus Daniel, RMIT University)

Researchers at the Royal Melbourne Institute of Technology (RMIT) in Australia have developed special β€œenergy-smart bricks” that can be made by mixing clay with glass waste and coal ash. These bricks can help mitigate the negative effects of traditional brick manufacturing, an energy-intensive process that requires large-scale clay mining, contributes heavily to CO2 emissions, and generates a lot of air pollution.

According to the RMIT researchers, β€œBrick kilns worldwide consume 375 million tonnes (~340 million metric tons) of coal in combustion annually, which is equivalent to 675 million tonnes of CO2 emission (~612 million metric tons).” This exceeds the combined annual carbon dioxide emissions of 130 million passenger vehicles in the US.

The energy-smart bricks rely on a material called RCF waste. It mostly contains fine pieces of glass (92 percent) left over from the recycling process, along with ceramic materials, plastic, paper, and ash. Most of this waste material generally ends up in landfills, where it can cause soil and water degradation. However, the study authors note, β€œThe utilization of RCF waste in fired-clay bricks offers a potential solution to the increasing global waste crisis and reduces the burden on landfills."

Read 15 remaining paragraphs | Comments

Climate and health benefits of wind and solar dwarf all subsidies

Wind turbines in front of a sunrise, with their blades blurred due to their motion.

Enlarge (credit: Ashley Cooper)

When used to generate power or move vehicles, fossil fuels kill people. Particulates and ozone resulting from fossil fuel burning cause direct health impacts, while climate change will act indirectly. Regardless of the immediacy, premature deaths and illness prior to death are felt through lost productivity and the cost of treatments.

Typically, you see the financial impacts quantified when the EPA issues new regulations, as the health benefits of limiting pollution typically dwarf the costs of meeting new standards. But some researchers from Lawrence Berkeley National Lab have now done similar calculationsβ€”but focusing on the impact of renewable energy. Wind and solar, by displacing fossil fuel use, are acting as a form of pollution control and so should produce similar economic benefits.

Do they ever. The researchers find that, in the US, wind and solar have health and climate benefits of over $100 for every Megawatt-hour produced, for a total of a quarter-trillion dollars in just the last four years. This dwarfs the cost of the electricity they generate and the total of the subsidies they received.

Read 14 remaining paragraphs | Comments

❌