❌

Reading view

There are new articles available, click to refresh the page.

Model mixes AI and physics to do global forecasts

Image of a dark blue flattened projection of the Earth, with lighter blue areas showing the circulation of the atmosphere.

Enlarge / Image of some of the atmospheric circulation seen during NeuralGCM runs. (credit: Google)

Right now, the world's best weather forecast model is a General Circulation Model, or GCM, put together by the European Center for Medium-Range Weather Forecasts. A GCM is in part based on code that calculates the physics of various atmospheric processes that we understand well. For a lot of the rest, GCMs rely on what's termed "parameterization," which attempts to use empirically determined relationships to approximate what's going on with processes where we don't fully understand the physics.

Lately, GCMs have faced some competition from machine-learning techniques, which train AI systems to recognize patterns in meteorological data and use those to predict the conditions that will result over the next few days. Their forecasts, however, tend to get a bit vague after more than a few days and can't deal with the sort of long-term factors that need to be considered when GCMs are used to study climate change.

On Monday, a team from Google's AI group and the European Centre for Medium-Range Weather Forecasts are announcing NeuralGCM, a system that mixes physics-based atmospheric circulation with AI parameterization of other meteorological influences. Neural GCM is computationally efficient and performs very well in weather forecast benchmarks. Strikingly, it can also produce reasonable-looking output for runs that cover decades, potentially allowing it to address some climate-relevant questions. While it can't handle a lot of what we use climate models for, there are some obvious routes for potential improvements.

Read 16 remaining paragraphs | Comments

No physics? No problem. AI weather forecasting is already making huge strides.

AI weather models are arriving just in time for the 2024 Atlantic hurricane season.

Enlarge / AI weather models are arriving just in time for the 2024 Atlantic hurricane season. (credit: Aurich Lawson | Getty Images)

Much like the invigorating passage of a strong cold front, major changes are afoot in the weather forecasting community. And the end game is nothing short of revolutionary: an entirely new way to forecast weather based on artificial intelligence that can run on a desktop computer.

Today's artificial intelligence systems require one resource more than any other to operateβ€”data. For example, large language models such as ChatGPT voraciously consume data to improve answers to queries. The more and higher quality data, the better their training, and the sharper the results.

However, there is a finite limit to quality data, even on the Internet. These large language models have hoovered up so much data that they're being sued widely for copyright infringement. And as they're running out of data, the operators of these AI models are turning to ideas such as synthetic data to keep feeding the beast and produce ever more capable results for users.

Read 41 remaining paragraphs | Comments

❌