Reading view

There are new articles available, click to refresh the page.

Bizarre fish has sensory “legs” it uses for walking and tasting

Evolution has turned out bizarre and baffling creatures, such as walking fish. It only gets weirder from there. Some of these fish not only walk on the seafloor, but use their leg-like appendages to taste for signs of prey that might be hiding.

Most species of sea robins are bottom-dwellers that both swim and crawl around on “legs” that extend from their pectoral fins. An international team of researchers has now discovered that the legs of the northern sea robin, Prionotus carolinus, double as sensory organs. They are covered in bumps called papillae (similar to those on a human tongue) with taste receptors that detect chemical stimuli coming from buried prey. If they taste something appetizing, they will dig for their next meal.

There is more to this fish than its extraordinary way of hunting. Analysis of P. carolinus genes found that a gene that may date back to the origin of animals controls the formation of both legs and sensory papillae, which hints at how they might have evolved.

Read full article

Comments

© NOAA

Karaoke reveals why we blush

A hand holding a microphone against a blurry backdrop, taken from an angle that implies the microphone is directly in front of your face.

Enlarge (credit: Peter Muller)

Singing off-key in front of others is one way to get embarrassed. Regardless of how you get there, why does embarrassment almost inevitably come with burning cheeks that turn an obvious shade of red (which is possibly even more embarrassing)?

Blushing starts not in the face but in the brain, though exactly where has been debated. Previous thinking often reasoned that the blush reaction was associated with higher socio-cognitive processes, such as thinking of how one is perceived by others.

After studying subjects who watched videos of themselves singing karaoke, however, researchers led by Milica Nicolic of the University of Amsterdam have found that blushing is really the result of specific emotions being aroused.

Read 12 remaining paragraphs | Comments

Researchers track individual neurons as they respond to words

Human Neuron, Digital Light Microscope. (Photo By BSIP/Universal Images Group via Getty Images)

Enlarge / Human Neuron, Digital Light Microscope. (Photo By BSIP/Universal Images Group via Getty Images) (credit: BSIP/Universal Images Group via Getty Images)

“Language is a huge field, and we are novices in this. We know a lot about how different areas of the brain are involved in linguistic tasks, but the details are not very clear,” says Mohsen Jamali, a computational neuroscience researcher at Harvard Medical School who led a recent study into the mechanism of human language comprehension.

“What was unique in our work was that we were looking at single neurons. There is a lot of studies like that on animals—studies in electrophysiology, but they are very limited in humans. We had a unique opportunity to access neurons in humans,” Jamali adds.

Probing the brain

Jamali’s experiment involved playing recorded sets of words to patients who, for clinical reasons, had implants that monitored the activity of neurons located in their left prefrontal cortex—the area that’s largely responsible for processing language. “We had data from two types of electrodes: the old-fashioned tungsten microarrays that can pick the activity of a few neurons; and the Neuropixel probes which are the latest development in electrophysiology,” Jamali says. The Neuropixels were first inserted in human patients in 2022 and could record the activity of over a hundred neurons.

Read 11 remaining paragraphs | Comments

How do brainless creatures control their appetites?

Image of a greenish creature with a long stalk and tentacles, against a black background.

Enlarge (credit: CHOKSAWATDIKORN / SCIENCE PHOTO LIBRARY)

The hydra is a Lovecraftian-looking microorganism with a mouth surrounded by tentacles on one end, an elongated body, and a foot on the other end. It has no brain or centralized nervous system. Despite the lack of either of those things, it can still feel hunger and fullness. How can these creatures know when they are hungry and realize when they have had enough?

While they lack brains, hydra do have a nervous system. Researchers from Kiel University in Germany found they have an endodermal (in the digestive tract) and ectodermal (in the outermost layer of the animal) neuronal population, both of which help them react to food stimuli. Ectodermal neurons control physiological functions such as moving toward food, while endodermal neurons are associated with feeding behavior such as opening the mouth—which also vomits out anything indigestible.

Even such a limited nervous system is capable of some surprisingly complex functions. Hydras might even give us some insights into how appetite evolved and what the early evolutionary stages of a central nervous system were like.

Read 13 remaining paragraphs | Comments

Mutations in a non-coding gene associated with intellectual disability

Colored ribbons that represent the molecular structure of a large collection of proteins and RNAs.

Enlarge / The spliceosome is a large complex of proteins and RNAs. (credit: NCBI)

Almost 1,500 genes have been implicated in intellectual disabilities; yet for most people with such disabilities, genetic causes remain unknown. Perhaps this is in part because geneticists have been focusing on the wrong stretches of DNA when they go searching. To rectify this, Ernest Turro—a biostatistician who focuses on genetics, genomics, and molecular diagnostics—used whole genome sequencing data from the 100,000 Genomes Project to search for areas associated with intellectual disabilities.

His lab found a genetic association that is the most common one yet to be associated with neurodevelopmental abnormality. And the gene they identified doesn’t even make a protein.

Trouble with the spliceosome

Most genes include instructions for how to make proteins. That’s true. And yet human genes are not arranged linearly—or rather, they are arranged linearly, but not contiguously. A gene containing the instructions for which amino acids to string together to make a particular protein—hemoglobin, insulin, albumin, whatever protein you like—is modular. It contains part of the amino acid sequence, then it has a chunk of DNA that is largely irrelevant to that sequence, then a bit more of the protein’s sequence, then another chunk of random DNA, back and forth until the end of the protein. It’s as if each of these prose paragraphs were separated by a string of unrelated letters (but not a meaningful paragraph from a different article).

Read 7 remaining paragraphs | Comments

❌