โŒ

Reading view

There are new articles available, click to refresh the page.

Black hole jet appears to boost rate of nova explosions

The intense electromagnetic environment near a black hole can accelerate particles to a large fraction of the speed of light and sends the speeding particles along jets that extend from each of the object's poles. In the case of the supermassive black holes found in the center of galaxies, these jets are truly colossal, blasting material not just out of the galaxy, but possibly out of the galaxy's entire neighborhood.

But this week, scientists have described how the jets may be doing some strange things inside of a galaxy, as well. A study of the galaxy M87 showed that nova explosions appear to be occurring at an unusual high frequency in the neighborhood of one of the jets from the galaxy's central black hole. But there's absolutely no mechanism to explain why this might happen, and there's no sign that it's happening at the jet that's traveling in the opposite direction.

Whether this effect is real, and whether we can come up with an explanation for it, may take some further observations.

Read full article

Comments

ยฉ [CDATA[NASA and the Hubble Heritage Team (STScI/AURA)]]

Researchers spot largest black hole jets ever discovered

Image of a faint web of lighter material against a dark background. The web is punctuated by bright objects, representing galaxies. One of those galaxies has shot jets of material outside the web itself.

Enlarge / Artist's conception of a dark matter filament containing a galaxy with large jets. (Caltech noted that some details of this image were created using AI.) (credit: Martijn Oei (Caltech) / Dylan Nelson (IllustrisTNG Collaboration).)

The supermassive black holes that sit at the center of galaxies aren't just decorative. The intense radiation they emit when feeding helps drive away gas and dust that would otherwise form stars, providing feedback that limits the growth of the galaxy. But their influence may extend beyond the galaxy they inhabit. Many black holes produce jets and, in the case of supermassive versions, these jets can eject material entirely out of the galaxy.

Now, researchers are getting a clearer picture of just how far outside of the galaxy their influence can reach. A new study describes the largest-ever jets observed, extending across a total distance of 23 million light-years (seven megaparsecs). At those distances, the jets could easily send material into other galaxies and across the cosmic web of dark matter that structures the Universe.

Extreme jets

Jets are formed in the complex environment near a black hole. The intense heating of infalling material ionizes and heats it, creating electromagnetic fields that act as a natural particle accelerator. This creates jets of particles that travel at a substantial fraction of the speed of light. These will ultimately slam into nearby material, creating shockwaves that heat and accelerate that, too. Over time, this leads to large-scale, coordinated outflows of material, with the scale of the jet being proportional to a combination of the size of the black hole and the amount of material it is feeding on.

Read 11 remaining paragraphs | Comments

โŒ