Reading view

There are new articles available, click to refresh the page.

Grid-scale batteries: They’re not just lithium

A shipping container labeled with a battery symbol, set among wind turbines and solar panels.

Enlarge (credit: Petal)

As power utilities and industrial companies seek to use more renewable energy, the market for grid-scale batteries is expanding rapidly. Alternatives to lithium-ion technology may provide environmental, labor, and safety benefits. And these new chemistries can work in markets like the electric grid and industrial applications that lithium doesn't address well.

“I think the market for longer-duration storage is just now emerging,” said Mark Higgins, chief commercial officer and president of North America at Redflow. “We have a lot of… very rapid scale-up in the types of projects that we’re working on and the size of projects that we’re working on. We’ve deployed about 270 projects around the world. Most of them have been small off-grid or remote-grid systems. What we’re seeing today is much more grid-connected types of projects.”

“Demand… seems to be increasing every day,” said Giovanni Damato, president of CMBlu Energy. Media projections of growth in this space are huge. “We're really excited about the opportunity to… just be able to play in that space and provide as much capacity as possible.”

Read 25 remaining paragraphs | Comments

Mice made transparent with a dye used in Doritos

Zihao Ou, who helped develop this solution, holds a tube of it.

Enlarge / Zihao Ou, who helped develop this solution, holds a tube of it.

One key challenge in medical imaging is to look past skin and other tissue that are opaque to see internal organs and structures. This is the reason we need things like ultrasonography, magnetic resonance, or X-rays. There are chemical clearing agents that can make tissue transparent, like acrylamide or tetrahydrofuran, but they are almost never used in living organisms because they’re either highly toxic or can dissolve away essential biomolecules.

But now, a team of Stanford University scientists has finally found an agent that can reversibly make skin transparent without damaging it. This agent was tartrazine, a popular yellow-orange food dye called FD&C Yellow 5 that is notably used for coloring Doritos.

Playing with light

We can’t see through the skin because it is a complex tissue comprising aqueous-based components such as cell interiors and other fluids, as well as protein and lipids. The refractive index is a value that indicates how much light slows down (on average, of course) while going through a material compared to going through a vacuum. The refractive index of those aqueous components is low, while the refractive index of the proteins and lipids is high. As a result, light traveling through skin constantly bends as it endlessly crosses the boundary between high and low refractive index materials.

Read 11 remaining paragraphs | Comments

A single peptide helps starfish get rid of a limb when attacked

A five-armed starfish, with orange and yellow colors, stretched out across a coral.

Enlarge (credit: Hal Beral)

For many creatures, having a limb caught in a predator’s mouth is usually a death sentence. Not starfish, though—they can detach the limb and leave the predator something to chew on while they crawl away. But how can they pull this off?

Starfish and some other animals (including lizards and salamanders) are capable of autonomy (shedding a limb when attacked). The biology behind this phenomenon in starfish was largely unknown until now. An international team of researchers led by Maurice Elphick, professor of Animal Physiology and Neuroscience at Queen Mary University of London, have found that a neurohormone released by starfish is largely responsible for detaching limbs that end up in a predator’s jaws.

So how does this neurohormone (specifically a neuropeptide) let the starfish get away? When a starfish is under stress from a predatory attack, this hormone is secreted, stimulating a muscle at the base of the animal’s arm that allows the arm to break off.

Read 11 remaining paragraphs | Comments

Natural piezoelectric effect may build gold deposits

Image of a white rock with gold and black deposits speckled throughout it.

Enlarge / A lot of gold deposits are found embedded in quartz crystals. (credit: Pierre Longnus)

One of the reasons gold is so valuable is because it is highly unreactive—if you make something out of gold, it keeps its lustrous radiance. Even when you can react it with another material, it's also barely soluble, a combination that makes it difficult to purify away from other materials. Which is part of why a large majority of the gold we've obtained comes from deposits where it is present in large chunks, some of them reaching hundreds of kilograms.

Those of you paying careful attention to the previous paragraph may have noticed a problem here: If gold is so difficult to get into its pure form, how do natural processes create enormous chunks of it? On Monday, a group of Australian researchers published a hypothesis, and a bit of evidence supporting it. They propose that an earthquake-triggered piezoelectric effect essentially electroplates gold onto quartz crystals.

The hypothesis

Approximately 75 percent of the gold humanity has obtained has come from what are called orogenic gold deposits. Orogeny is a term for the tectonic processes that build mountains, and orogenic gold deposits form in the seams where two bodies of rock are moving past each other. These areas are often filled with hot hydrothermal fluids, and the heat can increase the solubility of gold from "barely there" to "extremely low," meaning generally less than a single milligram in a liter of water.

Read 11 remaining paragraphs | Comments

Hydrogels can learn to play Pong

This electroactive polymer hydrogel "learned" to play Pong. Credit: Cell Reports Physical Science/Strong et al.

Pong will always hold a special place in the history of gaming as one of the earliest arcade video games. Introduced in 1972, it was a table tennis game featuring very simple graphics and gameplay. In fact, it's simple enough that even non-living materials known as hydrogels can "learn" to play the game by "remembering" previous patterns of electrical stimulation, according to a new paper published in the journal Cell Reports Physical Science.

"Our research shows that even very simple materials can exhibit complex, adaptive behaviors typically associated with living systems or sophisticated AI," said co-author Yoshikatsu Hayashi, a biomedical engineer at the University of Reading in the UK. "This opens up exciting possibilities for developing new types of 'smart' materials that can learn and adapt to their environment."

Hydrogels are soft, flexible biphasic materials that swell but do not dissolve in water. So a hydrogel may contain a large amount of water but still maintain its shape, making it useful for a wide range of applications. Perhaps the best-known use is soft contact lenses, but various kinds of hydrogels are also used in breast implants, disposable diapers, EEG and ECG medical electrodes, glucose biosensors, encapsulating quantum dots, solar-powered water purification, cell cultures, tissue engineering scaffolds, water gel explosives, actuators for soft robotics, supersonic shock-absorbing materials, and sustained-release drug delivery systems, among other uses.

Read 9 remaining paragraphs | Comments

That book is poison: Even more Victorian covers found to contain toxic dyes

Composite image showing color variation of emerald green bookcloth on book spines, likely a result of air pollution

Enlarge / Composite image showing color variation of emerald green bookcloth on book spines, likely a result of air pollution (credit: Winterthur Library, Printed Book and Periodical Collection)

In April, the National Library of France removed four 19th century books, all published in Great Britain, from its shelves because the covers were likely laced with arsenic. The books have been placed in quarantine for further analysis to determine exactly how much arsenic is present. It's part of an ongoing global effort to test cloth-bound books from the 19th and early 20th centuries because of the common practice of using toxic dyes during that period.

Chemists from Lipscomb University in Nashville, Tennessee, have also been studying Victorian books from that university's library collection in order to identify and quantify levels of poisonous substances in the covers. They reported their initial findings this week at a meeting of the American Chemical Society in Denver. Using a combination of spectroscopic techniques, they found that several books had lead concentrations more than twice the limit imposed by the US Centers for Disease Control (CDC).

The Lipscomb effort was inspired by the University of Delaware's Poison Book Project, established in 2019 as an interdisciplinary crowdsourced collaboration between university scientists and the Winterthur Museum, Garden, and Library. The initial objective was to analyze all the Victorian-era books in the Winterthur circulating and rare books collection for the presence of an arsenic compound called cooper acetoarsenite, an emerald green pigment that was very popular at the time to dye wallpaper, clothing, and cloth book covers. Book covers dyed with chrome yellow—favored by Vincent van Gogh—aka lead chromate, were also examined, and the project's scope has since expanded worldwide.

Read 8 remaining paragraphs | Comments

Scientists unlock more secrets of Rembrandt’s pigments in The Night Watch

The Nightwatch, or Militia Company of District II under the Command of Captain Frans Banninck Cocq (1642)

Enlarge / Rembrandt's The Night Watch underwent many chemical and mechanical alterations over the last 400 years. (credit: Public domain)

Since 2019, researchers have been analyzing the chemical composition of the materials used to create Rembrandt's masterpiece, The Night Watch, as part of the Rijksmuseum's ongoing Operation Night Watch, devoted to its long-term preservation. Chemists at the Rijksmuseum and the University of Amsterdam have now detected unusual arsenic-based yellow and orange/red pigments used to paint the duff coat of one of the central figures in the painting, according to a recent paper in the journal Heritage Science. It's a new addition to Rembrandt's known pigment palette that further adds to our growing body of knowledge about the materials he used.

As previously reported, past analyses of Rembrandt's paintings identified many pigments the Dutch master used in his work, including lead white, multiple ochres, bone black, vermilion, madder lake, azurite, ultramarine, yellow lake, and lead-tin yellow, among others. The artist rarely used pure blue or green pigments, with Belshazzar's Feast being a notable exception. (The Rembrandt Database is the best resource for a comprehensive chronicling of the many different investigative reports.)

Early last year, the researchers at Operation Night Watch found rare traces of a compound called lead formate in the painting—surprising in itself, but the team also identified those formates in areas where there was no lead pigment, white or yellow. It's possible that lead formates disappear fairly quickly, which could explain why they have not been detected in paintings by the Dutch Masters until now. But if that is the case, why didn't the lead formate disappear in The Night Watch? And where did it come from in the first place?

Read 11 remaining paragraphs | Comments

DNA-based bacterial parasite uses completely new DNA-editing method

Top row: individual steps in the reaction process. Bottom row: cartoon diagram of the top, showing the position of each DNA and RNA strand.

Enlarge / Top row: individual steps in the reaction process. Bottom row: cartoon diagram of the top, showing the position of each DNA and RNA strand. (credit: Hiraizumi, et. al.)

While CRISPR is probably the most prominent gene-editing technology, there are others, some developed before and since. And people have been developing CRISPR variants to perform more specialized functions, like altering specific bases. In all of these cases, researchers are trying to balance a number of competing factors: convenience, flexibility, specificity and precision for the editing, low error rates, and so on.

So, having additional options for editing can be a good thing, enabling new ways of balancing those different needs. On Wednesday, a pair of papers in Nature describe a DNA-based parasite that moves itself around bacterial genomes through a mechanism that hasn't been previously described. It's nowhere near ready for use in humans, but it may have some distinctive features that make it worth further development.

Going mobile

Mobile genetic elements, commonly called transposons, are quite common in many species—they make up nearly half the sequences in the human genome, for example. They are indeed mobile, showing up in new locations throughout the genome, sometimes by cutting themselves out and hopping to new locations, other times by sending a copy out to a new place in the genome. For any of this to work, they need to have an enzyme that cuts DNA and specifically recognizes the right transposon sequence to insert into the cut.

Read 17 remaining paragraphs | Comments

Unlocking the Secrets of Food Science

Food science is a fascinating field that blends chemistry, biology, and nutrition to understand the principles behind food processing, preservation, and safety. As an expert in Food and Cooking, I will delve into the intricacies of food science, explaining its significance and how it impacts our everyday lives. This article aims to provide valuable insights into the science of food…

Source

New recycling method makes solar cells even more environmentally friendly

Image of a solar cell, showing dark black silicon and silver-colored wiring.

Enlarge / All these pieces more or less pop apart after a brief chemical treatment. (credit: Israel Sebastian.)

For years, the arguments against renewable power focused on its high costs. But as the price of wind and solar plunged, the arguments shifted. Suddenly, concerns about the waste left behind when solar panels hit end-of-life became so common that researchers at the US's National Renewable Energy Lab felt compelled to publish a commentary in Nature Physics debunking them.

Part of the misinformation is pure nonsense. The primary ingredients of most panels are silicon, aluminum, and silver, none of which is a major environmental threat. Solar panels also have a useful lifespan of decades, and the vast majority of those in existence are less than 10 years old, so waste hasn't even become much of a problem yet. And, even once these panels age out, recycling techniques are available.

Perhaps the only realistic concern is that existing recycling technologies rely on nitric acid and can produce some toxic waste. But a group of researchers from Wuhan University have figured out an alternative means of recycling that avoids the production of toxic waste and is more energy-efficient as a bonus.

Read 14 remaining paragraphs | Comments

❌