❌

Reading view

There are new articles available, click to refresh the page.

Researchers spot largest black hole jets ever discovered

Image of a faint web of lighter material against a dark background. The web is punctuated by bright objects, representing galaxies. One of those galaxies has shot jets of material outside the web itself.

Enlarge / Artist's conception of a dark matter filament containing a galaxy with large jets. (Caltech noted that some details of this image were created using AI.) (credit: Martijn Oei (Caltech) / Dylan Nelson (IllustrisTNG Collaboration).)

The supermassive black holes that sit at the center of galaxies aren't just decorative. The intense radiation they emit when feeding helps drive away gas and dust that would otherwise form stars, providing feedback that limits the growth of the galaxy. But their influence may extend beyond the galaxy they inhabit. Many black holes produce jets and, in the case of supermassive versions, these jets can eject material entirely out of the galaxy.

Now, researchers are getting a clearer picture of just how far outside of the galaxy their influence can reach. A new study describes the largest-ever jets observed, extending across a total distance of 23 million light-years (seven megaparsecs). At those distances, the jets could easily send material into other galaxies and across the cosmic web of dark matter that structures the Universe.

Extreme jets

Jets are formed in the complex environment near a black hole. The intense heating of infalling material ionizes and heats it, creating electromagnetic fields that act as a natural particle accelerator. This creates jets of particles that travel at a substantial fraction of the speed of light. These will ultimately slam into nearby material, creating shockwaves that heat and accelerate that, too. Over time, this leads to large-scale, coordinated outflows of material, with the scale of the jet being proportional to a combination of the size of the black hole and the amount of material it is feeding on.

Read 11 remaining paragraphs | Comments

Swarm of dusty young stars found around our galaxy’s central black hole

Image with a black background, large purple streaks, and a handful of bright blue objects.

Enlarge / The Milky Way's central black hole is in a very crowded neighborhood. (credit: UMass/D.Wang/NASA/STScI)

Supermassive black holes are ravenous. Clumps of dust and gas are prone to being disrupted by the turbulence and radiation when they are pulled too close. So why are some of them orbiting on the edge of the Milky Way’s own supermassive monster, Sgr A*? Maybe these mystery blobs are hiding something.

After analyzing observations of the dusty objects, an international team of researchers, led by astrophysicist Florian Peißker of the University of Cologne, have identified these clumps as potentially harboring young stellar objects (YSOs) shrouded by a haze of gas and dust. Even stranger is that these infant stars are younger than an unusually young and bright cluster of stars that are already known to orbit Sgr A*, known as the S-stars.

Finding both of these groups orbiting so close is unusual because stars that orbit supermassive black holes are expected to be dim and much more ancient. Peißker and his colleagues β€œdiscard the en vogue idea to classify [these] objects as coreless clouds in the high energetic radiation field of the supermassive black hole Sgr A*,” as they said in a study recently published in Astronomy & Astrophysics.

Read 14 remaining paragraphs | Comments

Supermassive black hole roars to life as astronomers watch in real time

Artist’s animation of the black hole at the center of SDSS1335+0728 awakening in real timeβ€”a first for astronomers.

In December 2019, astronomers were surprised to observe a long-quiet galaxy, 300 million light-years away, suddenly come alive, emitting ultraviolet, optical, and infrared light into space. Far from quieting down again, by February of this year, the galaxy had begun emitting X-ray light; it is becoming more active. Astronomers think it is most likely an active galactic nucleus (AGN), which gets its energy from supermassive black holes at the galaxy's center and/or from the black hole's spin. That's the conclusion of a new paper accepted for publication in the journal Astronomy and Astrophysics, although the authors acknowledge the possibility that it might also be some kind of rare tidal disruption event (TDE).

The brightening of SDSS1335_0728 in the constellation Virgo, after decades of quietude, was first detected by the Zwicky Transient Facility telescope. Its supermassive black hole is estimated to be about 1 million solar masses. To get a better understanding of what might be going on, the authors combed through archival data and combined that with data from new observations from various instruments, including the X-shooter, part of the Very Large Telescope (VLT) in Chile's Atacama Desert.

There are many reasons why a normally quiet galaxy might suddenly brighten, including supernovae or a TDE, in which part of the shredded star's original mass is ejected violently outward. This, in turn, can form an accretion disk around the black hole that emits powerful X-rays and visible light. But these events don't last nearly five yearsβ€”usually not more than a few hundred days.

Read 5 remaining paragraphs | Comments

❌